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Introduction

- Dramatic expansion in post-primary education in low- and middle-income countries
(Ferreyra, Avitabile, Paz, Botero, & Urzúa, 2017; World Bank, 2018).

- There are important gaps in achievement and quality of education as measured by test
scores (Angrist & Lavy, 2009; Gneezy et al., 2019).

- Standardized tests affect the transition to higher education and labor market
outcomes (Bond, Bulman, Li, & Smith, 2018; Brunello & Kiss, 2022).

- Scores determine eligibility for financial aid (Bernal & Penney, 2019; Bruce &
Carruthers, 2014; Gurantz & Odle, 2020; Londoño-Vélez, Rodríguez, & Sánchez,
2020; Melguizo, Sanchez, & Velasco, 2016).
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SaberEs program

- Secretariat of Education of Medellin −→ 2016.

- 2016-2019 Development Plan.

- Develop skills that strengthen preparation for standardized tests like Saber 11.

- Additional installed capacity and vocational guidance components.

- 2 companies hired:
- Separate set of schools.

- Grades 8 to 11.

- Teacher training −→ Trained schools’ principals and coordinators −→ Teachers train
students during school hours −→ Simulation tests −→ Feedback sessions.
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Our paper

- Provide new evidence on the effectiveness of standardized test preparation programs.

- Especially important since most of this evidence suffers from self-selection bias.

- Three main questions:
1. Does the SaberEs program affect student learning gains measured by Saber 11 scores?
2. Does the program affect access to tertiary education?
3. What mechanisms made SaberEs successful in increasing access to tertiary education

programs?
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Other datasets: ICETEX (2018-2019), Sapiencia (2016-2019), Saber TyT (2016-2019), Ser
Pilo Paga (2015-2016), Olimpiadas del conocimiento (2015-2016).
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Data

- Administrative data from eight main sources.

- Saber 11 had a structural change in 2014 −→ Student’s rank as variable of interest
(0-100) to ensure comparability, following Laajaj, Moya, and Sánchez (2022).

Ranki =
xi − min(x)

max(x)− min(x)
∗ 100

- 2x2 (2015-2016) and dynamic difference-in-differences specifications (2010-2017).
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Data

- Distribution of the
standardized scores in
2015-2016.

- Right shift concentrated along
the median students.
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Summary Statistics

Mean SD Min Max

Panel A: Test Scores
General 258.69 42.14 13 450
Reading 52.85 8.93 0 100
Math 51.13 10.52 0 100
Science 51.48 9.11 0 100
Social Studies 51.52 10.06 0 93
English 51.66 10.37 0 100
Panel B: Higher Education and Financial Aid
Access to higher education 0.60 0.49 0 1
Access to short-cycle 0.31 0.46 0 1
Access to university 0.33 0.47 0 1
Access to STEM 0.26 0.44 0 1
Access to professional STEM 0.16 0.37 0 1
Access to short-cycle STEM 0.13 0.34 0 1
Received financial aid 0.05 0.22 0 1
Received Ser Pilo Paga 0.03 0.16 0 1
Panel C: Treatment
Treated 0.66 0.47 0 1
Treated Tres Editores 0.46 0.50 0 1
Treated Avancemos 0.20 0.40 0 1

Mean SD Min Max

Panel D: Covariates
Female 0.57 0.50 0 1
TV 0.80 0.40 0 1
Oven 0.60 0.49 0 1
Landline 0.85 0.36 0 1
Microwave 0.50 0.50 0 1
PC 0.78 0.42 0 1
Car 0.16 0.37 0 1
Internet 0.77 0.42 0 1
Washing machine 0.81 0.39 0 1
DVD 0.61 0.49 0 1
NSE 1 0.03 0.18 0 1
NSE 2 0.33 0.47 0 1
NSE 3 0.62 0.48 0 1
NSE 4 0.02 0.13 0 1
Employed 0.06 0.23 0 1
Parent’s education 0.10 0.30 0 1
High income 0.07 0.26 0 1
High stratum 0.04 0.20 0 1
Household floor 0.42 0.49 0 1
> 6 People in household 0.20 0.40 0 1
> 3 Rooms in household 0.61 0.49 0 1
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Empirical Strategy - 2x2
We estimate a simple difference-in-differences regression as:

Yict = α + β0Treatedc + β1Postt + β2Treated*Postct + X ′
ict δ + ε ict

where:
- Yict is the general rank of student i from school c in period t.

- Treatedc is a dummy variable indicating whether school c is treated.

- Postt takes a value of 1 if the student’s test application year is 2016.

- Treated ∗ Postct is their interaction.

- X’ict is a vector of controls.

- ε ict is the error term.
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Empirical Strategy - 2x2

We also estimate a two-way fixed effects regression as:

Yict = α + θ1Treated*Postct + ψc + γt + µict

where ψc and γt are the school and year fixed effects, respectively. µict is the error term.
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Empirical Strategy - 2x2

We use alternatives that better handle the inclusion of covariates:

- Outcome regression (Heckman, Ichimura, & Todd, 1997).

- Hájek (1971) type inverse probability weighting (IPW) with normalized weights.

- Sant’Anna and Zhao (2020) doubly robust improved difference-in-differences
estimator for repeated cross sections.

- RIF regressions (Firpo, Fortin, & Lemieux, 2009) −→ Effects on the unconditional
quantiles.
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Empirical Strategy - Dynamic

- Observations from 2010 to 2016 (2017) −→ Multiple time periods and one (two) year
(years) of treatment.

- When treatment is staggered TWFE would potentially be biased due to the presence
of heterogeneous effects (Borusyak & Jaravel, 2017; De Chaisemartin &
d’Haultfoeuille, 2020).

- Estimator is a weighted average of all 2x2 comparisons and includes “forbidden
comparisons” (Goodman-Bacon, 2021).
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Empirical Strategy - Dynamic (non-staggered)

We estimate an event studies regression as:

Yict = α0 +
2016

∑
h=2010

βh[t ∗ Treatedch = h] + ψc + γt + uict ∀ h ̸= 2015

where Yict is the outcome of student i from school c at time t, and t ∗ Treatedct are the
interactions of year and treatment status for each of the leads or lags (h). ψc and γt are the
school and year fixed effects respectively, and uict is the error term.

16 / 33



Empirical Strategy - Dynamic (staggered)

- We use the Callaway and Sant’Anna (2021) estimator.
- Simple aggregation.
- Event study aggregation.

- Alternative specification proposed by Borusyak, Jaravel, and Spiess (2021).
- Stronger assumption about parallel trends could lead to a larger bias (Roth, Sant’Anna,
Bilinski, & Poe, 2022).

- Calculate possible bias from pre-testing (Roth, Forthcoming) and conduct a sensitivity
analysis (Rambachan & Roth, 2022).
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Results - 2x2

- Statistically significant and positive effect
on the average student’s rank.

- Holds to more robust specifications like the
doubly robust one.

- Using the standardized test scores further
proves the robustness of the results.

See Results

- 22.9% reduction in the rank’s gap between
treated and untreated students.

- Mainly driven by math improvements
See Results

(1) (2) (3) (4) (5) (6)
DiD DiD TWFE OR IPW DR

SaberEs effect (β) 2.965*** 2.559*** 1.511** 2.222** 2.693*** 2.233**
(0.976) (0.886) (0.741) (0.917) (1.032) (0.916)

Gap reduction 30.6% 26.4% 15.6% 22.9% 27.8% 22.9%

Observations 35,495 35,484 35,484 35,484 35,484 35,484
Controls NO YES NO YES YES YES
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Results - Dynamic (non-staggered)
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Results - Dynamic (staggered)

- Extending the sample from 2010 to 2017 yields
better results.

- Effects are robust to both specifications.

- The program reduced the gap by around 30-40%.

- Results are robust when using the standardized
test scores. See Results

- The event study aggregations with balanced
groups show a similar pattern. See Results

- Power and sensitivity analyses on the pre-trends
further show the robustness of the results.

Power analysis Sensitivity analysis

(1) (2) (3) (4)
C&S BJS C&S BJS

SaberEs effect (β) 3.715*** 2.711*** 3.598*** 2.688***
(0.785) (0.497) (0.820) (0.462)

Gap reduction 38.3% 28.0% 37.1% 27.7%

Observations 147,656 147,554 147,656 70,859
Controls NO NO YES YES

Notes: Standard errors clustered at the school level. C&S relates to the "simple"
aggregation from Callaway and Sant’Anna (2021). BJS relates to the estimator
proposed by Borusyak et al. (2021). Controls include gender, household goods
and services (computer, car, internet and washing machine), parents education,
and stratum. *p<.05; **p<.01; ***p<.001
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Results - Heterogeneous effects on the outcome distribution

- Effects are evidenced above the 40th
percentile of the students’ rank
distribution.

- They are similar when looking at the
effects on the distribution of
standardized test scores. See Figure

- There are positive effects on students
above the SPP cut-off.
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Results - Higher education

Higher Education Short-cycle Professional

(1) (2) (3) (4) (5) (6) (7) (8) (9)
1 year 2 years 3 years 1 year 2 years 3 years 1 year 2 years 3 years

SaberEs effect (β) 0.033** 0.039*** 0.024** 0.026** 0.023** 0.010 0.006 0.015 0.014
(0.015) (0.015) (0.012) (0.013) (0.011) (0.011) (0.011) (0.012) (0.010)

Observations 35,484 35,484 35,484 35,484 35,484 35,484 35,484 35,484 35,484
Controls YES YES YES YES YES YES YES YES YES
Mean Control 2015 0.511 0.559 0.587 0.219 0.230 0.224 0.292 0.329 0.361

Notes: Standard errors clustered at the school level. Results come from a doubly robust estimation as in Sant’Anna and Zhao (2020). The
columns indicate access to each outcome 1, 2 and 3 years after students graduate from high school. *p<.05; **p<.01; ***p<.001
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Results - Higher Education

(1) (2) (3)
STEM Professional STEM Short-cycle STEM

SaberEs effect (β) 0.021* 0.011 0.019**
(0.011) (0.009) (0.008)

Observations 35,484 35,484 35,484
Controls YES YES YES
Mean Control 2015 0.287 0.173 0.152

Notes: Standard errors clustered at the school level. Results come from a doubly robust
estimation as in Sant’Anna and Zhao (2020). *p<.05; **p<.01; ***p<.001
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Results - Graduation from short-cycle education

Graduation from short-cycle education increases for all programs, and even for STEM
programs.

(1) (2)
All short-cycle programs Short-cycle STEM programs

SaberEs effect (β) 0.023** 0.010*
(0.010) (0.006)

Observations 35,484 35,484
Controls YES YES
Mean Control 2015 0.152 0.062

Notes: Standard errors clustered at the school level. Results come from a doubly robust estimation
as in Sant’Anna and Zhao (2020). *p<.05; **p<.01; ***p<.001
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Potential Mechanisms

For the majority of the population:
- Accumulation of specific human capital −→ Access to universities that require
admission exams (UdeA, Nacional & SENA).✓ See results

- Motivational effect (effects on Olimpiadas del conocimiento). × See results

- Access to financial aid (ICETEX & Sapiencia). × See results

For elite students:
- Access to Ser Pilo Paga. ✓ See results
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Conclusion
- One of the few papers to analyze these types of policies for socioeconomically
disadvantaged students in Latin America aside from Gómez, Bernal, and Herrera
(2020).

- We take advantage of granular administrative data to identify the causal effect of
SaberEs on students’ academic performance.

- We use state of the art econometric methods in a difference-in-differences estimation.

- We find a positive effect of over 2 points on the average student’s rank in the test −→
22.9% reduction in the pre-existing gap.

- In terms of higher education, we find a positive effect on access to short-cycle and
STEM programs. Also, the program positively affected graduation from short-cycle
programs.

- A limitation of our paper is the absence of a cost-benefit analysis. However, we
expect the net present value of benefits to be large and positive.
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Saber 11

- High school exit exam administered by ICFES.

- Compulsory test with compliance rates above 90% (Bernal & Penney, 2019).

- 500,000 students take it every year (March-August).

- Structural change in 2014 −→ 5 subject areas with scores between 0-100.

- ICFES offered a familiarization test that costed $30 USD (Bernal & Penney, 2019).

- Private companies offer courses (mostly used by private schools).
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Higher education

- Public and private institutions with admission processes each semester.

- Saber 11 plays a central role in the admission processes (Londoño-Vélez et al., 2020).

- Higher education costs in Colombia are relatively high (Ferreyra, 2021).

- Biggest public universities have highly competitive admission processes −→
Highest-achieving students enroll.

- Enrollment in private institutions for low-income students is mainly driven by funding.
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Results - 2x2

Table: Main results: Standardized score.

(1) (2) (3) (4) (5) (6)
DiD DiD TWFE OR IPW DR

SaberEs effect (β) 0.104*** 0.089*** 0.053** 0.073** 0.092** 0.074**
(0.034) (0.030) (0.026) (0.032) (0.036) (0.032)

Gap reduction 31.1% 26.6% 15.8% 22.0% 27.4% 22.3%
Observations 35,495 35,484 35,484 35,484 35,484 35,484
Controls NO YES YES YES YES YES

Back
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Results - 2x2 specific

Figure: Rank.
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Results - 2x2
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Results - Dynamic

Table: Dynamic Results: Standardized Score.

(1) (2) (3) (4)
C&S BJS C&S BJS

SaberEs effect (β) 0.131*** 0.099*** 0.123*** 0.094***
(0.028) (0.016) (0.029) (0.015)

Gap reduction 39.2% 29.6% 36.8% 28.1%

Observations 147,656 147,554 147,656 70,859
Controls NO NO YES YES

Notes: Standard errors clustered at the school level. C&S relates to the "simple"
aggregation from Callaway and Sant’Anna (2021). BJS relates to the estimator
proposed by Borusyak et al. (2021). Controls include gender, household goods
and services (computer, car, internet and washing machine), parents education,
and stratum. *p<.05; **p<.01; ***p<.001

Back
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Results - Dynamic

Figure: Average Effect on Student’s Rank by Length of
Exposure.
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Power Analysis

Table: Power analysis: bias from hypothesized trend

(1) (2) (3)

Estimate Slope Likelihood
ratio

General Rank 3.715 0.462 0.009
Standardized General Score 0.131 0.016 0.009

Notes: Column 1 displays the estimated “simple” coefficient from 21 and 2.
Column 2 shows the pre-trend that has 50% power of being detected (hy-
pothesized trend). Column 3 shows the likelihood ratio.

Back
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Sensitivity Analysis

Figure: Sensitivity analysis: general rank.
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Figure: Sensitivity analysis: standardized general score.
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Specific human capital mechanism

Table: Effects on access to short-cycle programs in institutions with Saber 11-like admission exams

Admission exam No admission exam

(1) (2) (3) (4) (5) (6)
1 year 2 years 3 years 1 year 2 years 3 years

SaberEs effect (β) 0.026** 0.024** 0.010 0.000 -0.001 0.000
(0.012) (0.010) (0.010) (0.007) (0.006) (0.008)

Observations 35,484 35,484 35,484 35,484 35,484 35,484
Controls YES YES YES YES YES YES
Mean Control 2015 0.132 0.141 0.126 0.0865 0.0896 0.0982

Notes: Standard errors clustered at the school level. Results come from a doubly robust estimation as
in Sant’Anna and Zhao (2020). Institutions with Saber 11-like admission exams that offer short-cycle
programs are SENA and UdeA. *p<.05; **p<.01; ***p<.001

Back
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Motivational effect mechanism

Table: Effects on student’s rank in Olimpiadas del Conocimiento

(1) (2) (3)
Grade 10 Grade 11 Joint

SaberEs effect (β) -0.271 -1.647 -0.992
(1.056) (1.213) (0.901)

Observations 35,852 31,592 67,444
Controls YES YES YES

Notes: Standard errors clustered at the school level. Results come
from a doubly robust estimation as in Sant’Anna and Zhao (2020).
All specifications control for stratum, family income, parent’s ed-
ucation, mobile phone ownership and student’s working status.
*p<.05; **p<.01; ***p<.001

Back
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Financial aid mechanism

Table: Effects on access to financial aid and Ser Pilo Paga

(1) (2) (3)
Higher Education Financial Aid Ser Pilo Paga

SaberEs effect (β) 0.037*** 0.005 0.010***
(0.013) (0.005) (0.004)

Observations 35,484 35,484 35,484
Controls YES YES YES
Mean Control 2015 0.677 0.0530 0.0464

Notes: Standard errors clustered at the school level. Results come from a doubly robust
estimation as in Sant’Anna and Zhao (2020). *p<.05; **p<.01; ***p<.001

Back
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Merit-based scholarship mechanism

Table: Effects on access to SPP by type of program

(1) (2)
Short-cycle SPP Professional SPP

SaberEs effect (β) 0.001* 0.010**
(0.000) (0.004)

Observations 35,484 35,484
Controls YES YES
Mean Control 2015 0.0007 0.0457

Notes: Standard errors clustered at the school level. Results come from
a doubly robust estimation as in Sant’Anna and Zhao (2020). *p<.05;
**p<.01; ***p<.001

Back
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